8^2m+2^2m=1/4

Simple and best practice solution for 8^2m+2^2m=1/4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8^2m+2^2m=1/4 equation:



8^2m+2^2m=1/4
We move all terms to the left:
8^2m+2^2m-(1/4)=0
We add all the numbers together, and all the variables
8^2m+2^2m-(+1/4)=0
We get rid of parentheses
8^2m+2^2m-1/4=0
We multiply all the terms by the denominator
8^2m*4+2^2m*4-1=0
Wy multiply elements
32m^2+8m^2-1=0
We add all the numbers together, and all the variables
40m^2-1=0
a = 40; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·40·(-1)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*40}=\frac{0-4\sqrt{10}}{80} =-\frac{4\sqrt{10}}{80} =-\frac{\sqrt{10}}{20} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*40}=\frac{0+4\sqrt{10}}{80} =\frac{4\sqrt{10}}{80} =\frac{\sqrt{10}}{20} $

See similar equations:

| 7a+1=6a+12 | | 8-10-5x=8 | | 5(3p-5)=50 | | -2=p-5/5 | | 2.8n+3.3=-47.1 | | 42=9m+6 | | -17=-7c | | b−-7=8 | | q+11=3 | | 4b-3=b+18 | | -12h+30=4h-17 | | c+5=9 | | v+9-1=0 | | s+-4=-3 | | -x–7=-11 | | -2(-4x-3)=66 | | 2+5x-2x=11 | | -2x–7=-15 | | 35=(3c+1) | | -2x+5x=6x-10 | | n−2=1 | | -13a+18a+-15a=20 | | 5q-6=-1 | | -7x+3=x-37 | | -7d+2d=15 | | -9k=3.34 | | 30+6p=(7p+42)-5 | | 19t-19t=t=17 | | -18=2(w+-17) | | 6=g−7 | | -3=-2+n/4 | | -2s+9s=14 |

Equations solver categories